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Incorporating the spike-timing-dependent synaptic plasticity �STDP� into a learning rule, we study spa-
tiotemporal learning in analog neural networks. First, we study learning of a finite number of periodic spa-
tiotemporal patterns by deriving the dynamics of the order parameters. When a pattern is retrieved successfully,
the order parameters exhibit periodic oscillation. Analyzing this oscillation of the order parameters, we eluci-
date the relation of the STDP time window to the properties of the retrieval state; the phase of the Fourier
transform of the STDP time window determines the retrieval frequency and the time average of the STDP time
window crucially affects the storage capacity. We also evaluate the stability of the order parameter oscillation
and identify the retrieval state that is stable in single-pattern learning but unstable in multiple-pattern learning
even when the retrieval state is independent of a pattern number. To examine the further applicability of the
STDP-based learning rule, we also study learning of nonperiodic spatiotemporal Poisson patterns. Our numeri-
cal simulations demonstrate that the Poisson patterns are memorized successfully not only in analog neural
networks but also in spiking neural networks.
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I. INTRODUCTION

There has been constant attention given to the relation of
memory function of the brain to synapse plasticity. Thus,
several efforts have been devoted to the analysis of theoret-
ical models of associative memory neural networks �1–23�.
In these studies of associative memories, neural networks are
mostly modeled to memorize binary patterns �i

�= ±1 �i
=1, . . . ,N, �=1, . . . , P� with the application of the Hebb
learning rule Jij = �1/N����i

�� j
�. This typical Hebb learning

rule is useful since it provides symmetric synapse connec-
tions �i.e., Jij =Jji�. In spin neural networks, symmetric syn-
apse connections ensure the existence of an energy function,
which allows one to apply the sophisticated analytical meth-
ods in the equilibrium statistical mechanics to investigating
neural networks �1�. In fact, Amit et al. have evaluated the
energy function with the replica method and derived the stor-
age capacity of symmetric spin neural networks �3�. Thanks
to these advanced analyses we have seen great progress in
the study of neural networks with symmetric synapse con-
nections.

On the other hand, neural networks with asymmetric syn-
apse connections remain less understood since an energy
function is undefinable in most asymmetric neural networks.
However, such neural networks without an energy function
are essential for learning about spatiotemporal patterns since
neural networks with an energy function, which eventually
settle into an certain equilibrium state, are apparently inca-
pable of retrieving dynamical spatiotemporal patterns. It is
well known that a simple asymmetric modification of the
Hebb learning rule Jij = �1/N����i

�+1� j
� realizes spatiotempo-

ral learning in discrete-time neural networks with the syn-
chronous update rule �4,5�. This modification of the Hebb
learning rule is, however, useless in realistic neural networks
based on continuous-time dynamics or the asynchronous up-

date rule since continuous transition of sequential patterns in
continuous-time dynamics is much more difficult to control
than discrete transition of sequential patterns in discrete-time
dynamics. Sompolinsky et al. have attempted to overcome
this problem by assuming time delays in spin neural net-
works �6�, and Coolen et al. have tried a more complicated
modification of the Hebb learning rule �7�. However, as far
as we know, no simple and systematic spatiotemporal learn-
ing rule has been proposed for typical neural networks with-
out time delays.

In the present paper, we study the general spatiotemporal
learning scheme that is inspired by the recent experimental
findings on the spike-timing-dependent synaptic plasticity
�STDP� �24–27�. Several experiments on neocortex and hip-
pocampus pyramidal neurons have revealed that weights of
some types of synapses are modified according to spike time
difference between presynaptic and postsynaptic neurons;
when a presynaptic neuron fires before a postsynaptic neu-
ron, the synaptic weight is strengthened, while if the neurons
fire in the opposite order, the synaptic weight is weakened.
This relation of synapse modification to spike time deference
is expressed by an asymmetric time window W��t� as de-
scribed in Fig. 1. Our aim in the present study is to incorpo-
rate this biologically plausible asymmetric time window into
a learning rule so that neural networks act as spatiotemporal
associative memory. In discrete-time spiking neural networks
and in continuous-time spiking neural networks, the STDP-
based learning rule has been shown to be effective in memo-
rizing periodic spatiotemporal spike timings �8–10�. In the
present study, we apply the STDP-based learning rule to
continuous-time periodic neural activities and analyze their
retrieval process in analog neural networks. We also find
successful memorization of nonperiodic spatiotemporal pat-
terns both in analog neural networks and in spiking neural
networks. Based on these findings, we reveal the consider-
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ably wide applicability of the STDP-based learning rule to
spatiotemporal learning.

Simple dynamics of analog neural networks brings vari-
ous benefits to the analysis of associative memory. Thus, we
adopt analog neural networks and analyze the STDP-based
learning of periodic spatiotemporal patterns. Because of the
assumption of periodic spatiotemporal patterns, the STDP-
based learning rule is analytically reduced to a simple func-
tion of the time average of W��t� and Fourier transform of
W��t� �11,12�. When we apply this learning rule to analog
neural networks, local fields are written as summations of
overlaps as in the case of the Hopfield model. Thus, provided
that networks memorize a finite number of patterns, one can
easily take the limit of an infinite number of neurons and
obtain the dynamics of overlaps. It is interesting that this
reduced learning rule is similar in style to the learning rules
assumed in Potts spin neural networks and phase oscillator
neural networks �13–16,28�. However, asymmetric connec-
tions given by the present learning rule make the stationary
behavior of the networks more dynamical than Potts spin
neural networks and phase oscillator neural networks, and
that permits nonequilibrium retrieval of spatiotemporal pat-
terns.

We find that when we encode a multiple number of pat-
terns in the networks, the degenerate eigenvalue � appears in
linear stability analysis of the dynamics of overlaps. Evalu-
ating this eigenvalue �, we identify the retrieval state that is
stable in single-pattern learning but unstable in multiple-
pattern learning. Interestingly, this change of stability can
happen even when the retrieval state is independent of a
pattern number. Our analysis further shows that the storage
capacity of the present associative memory is maximized
when the time average of the time window W��t� takes a
zero value. This analytical result explains important roles of
the negative and positive parts of the STDP time window in
the encoding of a lot of spatiotemporal patterns.

Our analysis focuses on analog neural networks memoriz-
ing specific periodic spatiotemporal patterns. To examine the
further flexibility of the STDP-based learning rule, we nu-
merically study learning of nonperiodic spatiotemporal Pois-

son patterns both in analog neural networks and in spiking
neural networks. In both networks, we confirm the successful
retrieval of the spatiotemporal Poisson patterns.

The present paper is organized as follows. In Sec. II, we
present dynamics of analog neural networks and introduce
the STDP-based learning rule to encode periodic spatiotem-
poral patterns. In Sec. III, we derive order parameters dy-
namics for arbitrary form of transfer function and then ana-
lyze the stability of the retrieval state. In Sec. IV, the analysis
is applied to the case when the transfer function takes the
form of a Heaviside function, and then the solutions of the
analysis are compared with numerical simulations. Finally, in
Sec. V, we give a summary and show the results of the nu-
merical simulations of the learning of the spatiotemporal
Poisson patterns.

II. ANALOG NEURAL NETWORKS AND
SPATIOTEMPORAL LEARNING BASED ON THE SPIKE-

TIMING-DEPENDENT SYNAPTIC PLASTICITY

We study analog neural networks

d

dt
xi = − xi + F�hi� , �1�

where xi represents the activity of neuron i, transfer function
F�h� denotes the input-output relationship of neurons, and
local field hi is defined by

hi = �
j

Jijxj . �2�

In these analog neural networks we consider the problem of
encoding periodic spatiotemporal patterns of the form

�i
� = �1/2��1 + cos��t − �i

��� ,

i = 1, . . . ,N, � = 1, . . . ,P , �3�

where � represents the frequency of periodic spatiotemporal
patterns, and phase shift �i

� is chosen randomly from the
uniform distribution within the interval �0,2	�. Spatiotem-
poral patterns �i

� are assumed to be positive valued since
these patterns represent spatiotemporal firing rates. We en-
code these spatiotemporal patterns with a learning rule based
on the spike-timing-dependent synaptic plasticity. Experi-
mentally, synaptic modification in the STDP is expressed by
�J
W��t�, where �J represents synapse weight change and
�t denotes spike time difference between presynaptic and
postsynaptic neurons. Time window W��t� takes an asym-
metric shape having both negative and positive parts, as
schematically shown in Fig. 1. As in our previous study
�11,12�, we estimate the STDP-based synapse modification
for learning of a single pattern � as

�Jij
� 
 �

−�

� �
−�

�

�i
��t1�W�t1 − t2�� j

��t2�dt1dt2. �4�
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FIG. 1. The schematic shape of the time window of spike-
timing-dependent synaptic plasticity �STDP� given by Eq. �50� with
parameters �−=33.7, �+=16.8, �0=−5, and r=1. The experimental
studies have clarified that weights of some types of synapses are
modified according to �J
W��t�, where �J represents change of
synaptic weight and �t denotes spike time difference between
presynaptic and postsynaptic neurons.
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Substituting Eq. �3� into Eq. �4�, we obtain

�Jij
� 
 �

0

2	/�

dt1�
−�

�

dt2
1

2
�1 + cos��t1 − �i

���

W�t1 − t2�
1

2
�1 + cos��t2 − � j

���


 Re�a�i
�� j

�*� + 2W̄ �5�

with

�i
� = ei�i

�
, �6�

where asterisk indicates complex conjugate, and complex

number a and real number W̄ are defined by

a = �
−�

�

W�t�e−i�tdt �7�

and

W̄ = �
−�

�

W�t�dt . �8�

It is worthy to note that variable a is a Fourier component of
time window W��t� corresponding to pattern frequency �

and W̄ is the time average of time window W��t�. We extend
this single pattern learning rule to the case of multiple pat-
terns �i

� ��=1,2 , . . . , P�. Applying the proper scaling, we
obtain the following learning rule:

Jij =
1

N
�
�=1

P

Re�a�i
�� j

�*� +
b

N
�9�

with

b = 2PW̄ . �10�

This is the learning rule we study in the what follows. We
generate random spatiotemporal patterns �3� and determine
synapse connections by the learning rule �9�. Then, with
these quenched synapse connections, we conduct numerical
simulations and theoretical analysis. Note that both in nu-
merical simulations and in analysis, synapse connections are
fixed over time.

The result of the numerical simulation in Fig. 2 illustrates
how learning rule �9� contributes to spatiotemporal learning
in analog neural networks. In this numerical simulation, we
randomly generate three spatiotemporal patterns �i

� ��
=1,2 ,3�. Figure 2�a� describes the first spatiotemporal pat-
tern �i

1. We encode these three spatiotemporal patterns by
learning rule �9�, and then carry out the numerical integration
of the dynamics of analog neural networks with the Heavi-
side function �48� under the initial condition xi�0�=�i

1�0�.
The behavior of analog neurons in this numerical simulation
is described in Fig. 2�b�. Note that while the wave forms of
xi in Fig. 2�b� are different from those of �i

1 in Fig. 2�a�, the
phase shifts �i

1 in Fig. 2�a� are well reproduced in the
spatiotemporal pattern in Fig. 2�b�. In this sense, initial

condition xi�0�=�i
1�0� leads to retrieval of pattern �i

1�t�, pre-
serving the phase relation among components �i

1�t� and
changing the oscillation frequency to the faster one �note that
the X-axis scale of Fig. 2�a� is different than that of Fig.
2�b��.

To measure the similarity of xi to encoded phase shift �i
1,

we define overlaps for pattern � as

(a)

0 100 200 300

ne
ur

on

t

(b)

0 10 20 30 40

ne
ur

on

t

(c)

-0.5

-0.25

0

0.25

0.5

0 10 20 30 40

m
1

t

Re(m1)
Im(m1)

|m1|

FIG. 2. The result of the numerical simulation of associative
memory of analog neural networks with the STDP-based learning
rule. In this numerical simulation, three periodic spatiotemporal pat-
terns �i

� ��=1, . . . ,3� are generated randomly at frequency �
=0.022	, and then encoded in networks of 10 000 analog neu-
rons according to the learning rule �7�–�10� by using the time win-
dow W��t� in Fig. 1�a�. The first pattern �i

1 is plotted as a function
of time only for the first ten neurons �i=1, . . . ,10�. �b� The behavior
of first ten neurons xi in the numerical simulation are plotted as a
function of time. The analog neuron dynamics �1� is computed with
the Heaviside function �48�. The initial condition is set to xi�0�
=�i

1�0�, which induces the retrieval of pattern 1. �c� The time evo-
lution of overlap m1 defined by Eq. �11� is plotted as a function of
time.
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m� =
1

N
�

i

�i
�xi. �11�

The time evolution of overlap m1 is described in Fig. 2�c�.
Owing to periodic behavior of xi, complex number m1 exhib-
its periodic oscillation on complex plain. After a long time,
overlap m1 settles into the stationary state with constant ab-
solute value and constant angular frequency, reflecting the
successful retrieval of the first pattern. In the following we
represent this retrieval frequency of the overlap by �̃. Re-
trieval frequency �̃ takes a different value from pattern fre-
quency � since retrieval occurs at a time scale different from
encoded patterns. Also note that while overlap m1 shows
periodic oscillation with a nonzero amplitude, other overlaps
�i.e., m2 and m3� remain close to zero �data not shown�.

III. ANALYSIS OF ANALOG NEURAL NETWORKS
WITH LEARNING RULE (9)

To investigate the above-mentioned time evolution of
overlaps, we derive dynamics of order parameters for the
present analog neural networks. Note that in the present sec-
tion we analyze neural networks with learning rule �9�. In
fact, variables a and b in learning rule �9� are determined
through Eqs. �7�, �8�, and �10�, and hence functions of vari-
ous learning parameters, such as pattern frequency �, num-
ber of patterns P, and the shape of time window W��t�.
Nevertheless, during the present section, we treat variables a
and b just as certain constant parameters. In the later sec-
tions, such as Secs. IV A and IV B, we substitute Eqs. �7�,
�8�, and �10� into variables a and b, and discuss the influence
of the above-mentioned learning parameters on retrieval
properties. Also note that pattern number P is assumed to be
finite throughout the paper. For finite P, we take the limit of
an infinite number of neurons �N→�� to obtain dynamics of
order parameters.

A. Dynamics of order parameters

We define mean activity X by

X =
1

N
�

i

xi. �12�

Then, from Eqs. �9�, �11�, and �12�, we rewrite local field �2�
in the form

hi = �
�

Re�a�i
�m�*� + bX . �13�

Therefore, from Eqs. �1� and �11�, we obtain dynamics of
overlaps

d

dt
m� = − m� +

1

N
�

i

�i
�F��

�

Re�a�i
�m�*� + bX�

= − m� + 	��F��
�

Re�a��m�*� + bX�
 , �14�

where we take the limit N→� for finite P to replace the
summation over i by the average �¯� defined by

1

N
�

i

f��i
1,�i

2, . . . ,�i
P� = �f��1,�2, . . . ,�P��

=
1

�2	�P�
0

2	

d�1�
0

2	

d�2
¯ �

0

2	

d�P

f�ei�1
,ei�2

, . . . ,ei�P
� . �15�

In the same manner, from Eqs. �1� and �12�, we obtain the
dynamics of X as

d

dt
X = − X + 	F��

�

Re�a��m�*� + bX�
 . �16�

Equations �14� and �16� yield the closed dynamics for over-
lap m���=1, . . . , P� and mean activity X. Since complex
number m� is effectively two dimensional, the total dimen-
sion of dynamics �14� and �16� is 2P+1. Order parameter
dynamics �14� and �16� thus enables one to carry out a much
more efficient investigation than the original N-dimensional
neural networks.

We can reduce �2P+1�-dimensional dynamics �14� and
�16� further by representing the overlap in the polar form

m� = m�ei��
. �17�

Substitution of Eq. �17� into Eq. �14� yields

dm�
dt

ei��
+ m�ei���i

d��

dt
� = − m�ei��

+ 	��F��
�

Re�a��m�e−i��
� + bX�


= − m�ei��
+

1

�2	�P � �
��=1

P

d���ei��
F��

�

Re�am�ei���−���� + bX�
= − m�ei��

+ ei�� 1

�2	�P � �
��=1

P

d���ei��
F��

�

Re�am�ei��
� + bX�

= − m�ei��
+ ei��	��F��

�

Re�a��m�� + bX�
 . �18�
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Therefore, we obtain

d

dt
m� = − m� + 	Re����F��

�

Re�a��m�� + bX�

�19�

and

d

dt
�� =

1

m�	Im����F��
�

Re�a��m�� + bX�
 . �20�

Equation �19� describes the dynamics of absolute value of
overlap m�, while d�� /dt in Eq. �20� gives the frequency of
oscillation of overlap m�. Following the similar scheme, we
rewrite Eq. �16� in the form

d

dt
X = − X + 	F��

�

Re�a��m�� + bX�
 . �21�

Equations �19� and �21� yield �P+1�-dimensional closed dy-
namics for m� ��=1, . . . , P� and X, that is, we can analyze
the behavior of m� ��=1, . . . , P� and X without calculating
Eq. �20�. Note, however, that determination of oscillation
frequency of overlaps requires evaluation of Eq. �20�.

B. Retrieval state

To investigate the properties of retrieval state, we analyze
fixed points of dynamics �19� and �21�. In the successful
pattern retrieval described in Fig. 2, overlap m1 eventually
settles into the stationary state with the constant absolute
value, while other overlaps m� ��=2, . . . , P� remain close to
zero. We mathematically define this retrieval state as

m1 � 0, �22�

m2 = m3 = ¯ = mP = 0, �23�

and

d

dt
m1 =

d

dt
X = 0, �24�

where we safely assume m1 as a retrieved pattern.
We substitute Eqs. �22�–�24� into Eq. �19� and obtain

m1 = �Re��1�F�Re�a�1m1� + bX��

=
1

2	
�

0

2	

cos �1F�am1cos��1 + �� + bX�d�1,

�25�

where variable � is defined by the polar form of variable a

a = aei�. �26�

Applying the same scheme to Eq. �21�, we have

X = �F�Re�a�1m1� + bX��

=
1

2	
�

0

2	

F�am1cos��1 + �� + bX�d�1. �27�

A solution of Eqs. �25� and �27� determines m1 and X in

retrieval state. These equations can be solved numerically for
arbitrary form of transfer function F�h�.

Retrieval frequency �̃, namely, oscillation frequency of
an overlap in retrieval state, is given as

�̃ =
d�1

dt
, �28�

where d�1 /dt represents the time derivative of �1 in retrieval
state. Therefore, we substitute Eqs. �22�–�24� into Eq. �20�,
and obtain

�̃ =
1

m1
�Im��1�F�Re�a�1m1� + bX��

=
1

2	m1�0

2	

sin �1F�am1cos��1 + �� + bX�d�1

= −
sin �

	m1�0

	

cos �1F�am1cos �1 + bX�d�1. �29�

In the last line of the above calculations, we simplify the
integral by changing variable �1 by �1−�. Applying the
same simplification to Eq. �25�, we obtain

m1 =
cos �

	
�

0

	

cos �1F�am1cos �1 + bX�d�1. �30�

Substitution Eq. �30� into Eq. �29� yields

�̃ = − tan � . �31�

This implies that retrieval frequency �̃ is determined only by
�, namely, the phase of the Fourier component of time win-
dow W��t� corresponding to pattern frequency �.

C. Stability of retrieval state in networks
with a single encoded pattern „P=1…

The solution of Eqs. �25� and �27� yields fixed points of
the dynamics �19� and �21�. However, some of these solu-
tions are unstable fixed points, which are useless for the pur-
pose of associative memories. In this section, we analyze
linear stability of solutions of Eqs. �25� and �27�, assuming
that only a single pattern is encoded in networks �P=1�. We
discuss the case of multiple patterns �1� P� in the next sec-
tion.

To evaluate linear stability of the solutions, we consider
perturbed state m1+�m1 and X+�X, where m1 and X rep-
resent a solution of Eqs. �25� and �27�. From Eqs. �19� and
�25�, dynamics of �m1 is given as

d

dt
�m1 = − �m1 + �Re��1�F��Re�a�1m1� + bX�

�Re�a�1��m1 + b�X��

= − �m1 + I��1,a�1��m1 + I��1,b��X , �32�

where we use an abbreviation

I�f ,g� = �Re�f�F��Re�a�1m1� + bX�Re�g�� . �33�

From Eqs. �21� and �27�, dynamics of �X is obtained as
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d

dt
�X = − �X + �F��Re�a�1m1� + bX��Re�a�1��m1 + b�X��

= − �X + I�1,a�1��m1 + I�1,b��X . �34�

We can summarize Eqs. �32� and �34� in the form

d

dt
� �X

�m1 � = A� �X

�m1 � �35�

with

A = �− 1 + I�1,b� I�1,a�1�
I��1,b� − 1 + I��1,a�1�

� . �36�

We represent eigenvalues of matrix A by �1 and �2. A solu-
tion of Eqs. �25� and �27� is stable if eigenvalues �1 and �2
satisfy the condition

Re��l� � 0, l = 1,2. �37�

D. Stability of retrieval state in networks
with multiple encoded patterns „1�P…

When multiple patterns are encoded �1� P�, we have to
analyze perturbations of nonretrieved patterns �m� ��
=2, . . . , P� as well as �m1 and �X. Following the same
scheme as Eqs. �32� and �34�, we obtain dynamics of �m�
��=1, . . . , P� as

d

dt
�m� = − �m� + 	Re����F��Re�a�1m1� + bX�

��
�

Re�a����m� + b�X�

= − �m� + �

�

I���,a����m� + I���,b��X ,

�38�

and dynamics of �X as

d

dt
�X = − �X + 	F��Re�a�1m1� + bX�

��
�

Re�a����m� + b�X�

= − �X + �

�

I�1,a����m� + I�1,b��X . �39�

Equations �38� and �39� are summarized as

d

dt�
�X

�m1
�m2
]

�mP
� = B�

�X

�m1
�m2
]

�mP
� �40�

with

B =�
− 1 + I�1,b� I�1,a�1� I�1,a�2� . . . I�1,a�P�

I��1,b� − 1 + I��1,a�1� I��1,a�2� . . . I��1,a�P�
I��2,b� I��2,a�1� − 1 + I��2,a�2� . . . I��2,a�P�

] ] ] � ]

I��P,b� I��P,a�1� I��P,a�2� . . . − 1 + I��P,a�P�
� . �41�

From the definition of I�f ,g� in Eq. �33�, it is straightforward
to show

I�1,a��� = I��1,a��� = I���,b� = I���,a�1� = 0,

2 � � , �42�

and

I���,a��� = 0, 2 � �,�,� � � . �43�

These relations imply that a lot elements in matrix B take the
zero values. Noting the further relations

I���,a��� = I��2,a�2�, 2 � � , �44�

we can rewrite matrix B in the form

B =�
A 0

− 1 + I��2,a�2�
�

0 − 1 + I��2,a�2�
� , �45�

where A represents the matrix defined by Eq. �36�. There-
fore, matrix B has the same eigenvalues as matrix A �i.e., �1
and �2�, and degenerate eigenvalue

� = − 1 + I��2,a�2� . �46�

A solution of Eqs. �25� and �27� is stable when the eigenval-
ues satisfy the condition

Re��l� � 0 and Re��� � 0, l = 1,2. �47�

While stability of solutions with a single encoded pattern
�P=1� is determined only from �1 and �2, stability with mul-
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tiple encoded patterns �1� P� requires further evaluation of
eigenvalue �. As will be shown in the next section, under a
certain condition, Re��� takes a positive value while Re��1�
and Re��2� take negative values. In such a case, stable re-
trieval state with a single pattern �P=1� becomes unstable
with multiple patterns �1� P�. Evaluation of � is thus indis-
pensable for analyzing the phase transition occurring with
multiple encoded patterns �1� P� even when the solution
with multiple patterns �1� P� is the same as a single pattern
�P=1�.

IV. THE CASE OF THE HEAVISIDE FUNCTION

Let us apply the above analysis to the case when transfer
function F�h� is represented by the Heaviside function of the
form

F�h� = H�h� = �0, h � 0,

1, 0 � h .
� �48�

Assuming this Heaviside function, we aim to investigate how
positive-valued spatiotemporal patterns �i

� are retrieved in
analog neural networks with positive-valued transfer func-
tion. As shown in the Appendix, the assumption of the
Heaviside function simplifies the calculation of the quantities
m1 and X, and of eigenvalues �1, �2, and �. Because of the
simple relation

H�hi� = H��
j
� 1

N
�
�

Re�a�i
�� j

�*� +
b

N�xj�
= H��

j
� 1

N
�
�

Re�ei��i
�� j

�*� +
b/a

N �xj� , �49�

all analytical results in the Appendix take the form of func-
tions of b / a. Therefore, we treat b / a almost as an inde-
pendent parameter in the present section.

Typical behavior of overlap m1 and eigenvalues �1, �2,
and � are plotted as functions of b / a in Fig. 3. Within the
interval 0�b / a�0.15, Eqs. �19� and �21� have two solu-
tions, which are described by thick and dotted lines in Fig.
3�a�. When a single pattern is encoded, eigenvalues �1 and
�2 determine stability of solutions. Equation �A13� shows
that �1 always takes the value of −1. Meanwhile, as de-
scribed in Fig. 3�b�, Re��2� takes a negative value for the
solution with the thick line and a positive value for the so-
lution with the dotted line. This implies that the thick line in
Fig. 3�a� represents the stable retrieval state, while the dotted
line represents the unstable retrieval state.

When we encode multiple patterns �1� P�, we have to
evaluate eigenvalue � as well as eigenvalues �1 and �2. We
draw the vertical dotted line in all three figures in Fig. 3 so as
to indicate the critical point �b / a�c�−0.45, at which Re���
takes the zero value as shown in Fig. 3�c�. Beyond the ver-
tical line �i.e., �b / a�c�b / a�, the retrieval state with the
thick line in Fig. 3�a� is always stable since Re��� is nega-
tive. However, below the vertical dotted line �i.e., b / a
� �b / a�c�, Re��� is positive, and the retrieval state with the
thick line becomes unstable. Positive Re��� below the verti-

cal dotted line thus induces phase transition, in which stable
retrieval state with a single encoded pattern �P=1� becomes
unstable with multiple patterns �1� P�.

The numerical simulations in Figs. 4–6 illustrate the
phase transition induced by eigenvalue �. In Fig. 4, we set
a=1 and b=−0.4, with which b / a is beyond the critical
point �b / a�c. Therefore, overlap m1 in Fig. 4 shows suc-
cessful pattern retrieval even when we encode multiple pat-
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FIG. 3. �a� A fixed point of dynamics �19� and �21� with the
Heaviside function �48� is plotted as a function of b / a for �
=−	 /4. The thick line and the dotted line are utilized to distinguish
multiple solutions arising in the interval 0�b / a�0.15. �b� Real
parts of eigenvalues �1 and �2 of matrix A are plotted. Eigenvalue
�1 takes −1 for both the solutions �i.e., the thick line and the dotted
line�. Meanwhile, eigenvalue �2 takes different values for different
solutions, which are indicated by the thick line and the dotted line
in the same way as �a�. �c� The real part of eigenvalue � of matrix
B is plotted. The thick line and the dotted line corresponds to the
two different solutions described in �a�. The vertical dotted line are
plotted in all three figures so as to indicate the critical point
�b / a�c�−0.45, at which Re��� takes the zero value.
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terns P=3. Figure 5 describes the results of the numerical
simulations with a=1 and b=−0.6, with which b / a is below
the critical point. As shown in Fig. 5�a�, retrieval is success-
ful when a single pattern is encoded �P=1�. However, when
we encode multiple patterns as in the cases of Figs. 5�b�
�P=2� and 5�c� �P=3�, retrieval is impossible since nonre-
trieved overlaps m����1� increase their size as a result of
positive Re���. In Figs. 5�b� and 5�c�, the network seems to
settle into mixture state.

In Fig. 6, we compare the sizes of overlaps in numerical
simulations with theoretical values. As shown in Fig. 6�a�,
the numerical simulations with P=1 show a good agreement
with the thick line for all the value of b / a. On the other
hand, the numerical simulations in Fig. 6�b� �P=2� and 6�c�
�P=3� deviate from the thick line below the vertical dotted
line as a result of positive Re���. These numerical simula-
tions clearly indicate the occurrence of the phase transition at
�b / a�c.

Figure 7�a� shows the �-�b / a� phase diagram drawn
from our analysis. Retrieval state with negative Re��1� and
Re��2� is found inside the region enclosed by thick line. In
the region with “P�1,” Re��� takes a negative value, and
retrieval state is always stable for arbitrary finite value of P.
However, in the region denoted by “P=1,” retrieval is pos-
sible only with P=1 since Re��� takes a positive value. Fig-
ure 7�b� shows retrieval frequency �̃. Note that retrieval fre-
quency �̃ is a function of � as shown in Eq. �31�, and does
not depend on other parameters such as variables a and b.
With negative �, frequency �̃ takes a positive value, and the
overlap oscillates to the same direction as encoded pattern.
Oscillation becomes considerably fast near �=−	 /2 since �̃
diverges at �=−	 /2. Frequency �̃ decreases as � increases,
and oscillation stops at �=0. When � is positive, frequency
�̃ takes a negative value, and the overlap oscillates to the
direction opposite to the encode patterns. In this case, net-
works retrieve encoded patterns in the reversed order with
respect to time.

A. The relation of retrieval state to the STDP time window

The above analysis has clarified the role of learning rule
�9� in associative memory of analog neural networks. We

now substitute Eqs. �7�, �8�, and �10� into variables a and b,
and investigate the influence of the STDP time window on
the retrieval properties of analog neural networks.

We focus on the STDP time window of the form

W��t� = �−
r

�−
e��t−�0�/�− �t � �0,

1

�+
e−��t−�0�/�+ �0 � �t ,� �50�

where parameters �− and �+ represent decay time of STDP
time window and parameter �0 denotes time shift. Parameter
r controls the size of a negative part of the time window
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FIG. 4. The numerical simulation of analog neural networks
with the Heaviside function is carried out for N=10 000, P=3, �
=−	 /4, a=1, and b=−0.4. Absolute values of all overlaps are
plotted as a function of time.
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FIG. 5. The numerical simulations of analog neural networks
with the Heaviside function are carried out for N=10 000, �
=−	 /4, a=1, and b=−0.6 with the pattern number �a� P=1, �b�
P=2, and �c� P=3. Absolute values of all overlaps are plotted as a
function of time. The high absolute value of the overlap in �a�
�m1�0.14� indicates the successful pattern retrieval, while the low
absolute value of the overlap in �b� and �c� �m1�0.1� implies
settlement to mixture state.

YOSHIOKA, SCARPETTA, AND MARINARO PHYSICAL REVIEW E 75, 051917 �2007�

051917-8



W��t�; when r takes one, the area of the negative part is
equal to the area of the positive part. Figure 1 shows the
example of STDP time window defined by Eq. �50�. In the
present section, the parameter values of the time window is
set to be the same as Fig. 1, except for r=1.125.

Substitution of Eq. �50� into Eq. �7� yields

a = e−i��0� 1

1 + i��+
−

r

1 − i��−
� . �51�

The time average of the time window W̄ in Eq. �8� is given

as W̄=1−r. Therefore, from Eq. �10�, we obtain

b = 2P�1 − r� . �52�

Equation �51� indicates that variable a is a function of pat-
tern frequency �. Therefore, with change of pattern fre-
quency �, point �b / a ,�� moves on the �− �b / a� phase
diagram as shown in Fig. 8�a�, where we draw the trajecto-
ries for P=1 and P=2. With �=0 and P=1, point �b / a ,��
locates at �−2P ,−	�. As � increases, point �b / a ,�� pro-
ceeds to the direction indicated by the arrow. With P=1, the
trajectory has an intersection with the retrieval phase denoted
by “P=1” and “P�1,” at which networks can retrieve pat-
terns. Retrieval frequency �̃ at this intersection is plotted as
a function of � in Fig. 8�b�. Interestingly, as � increases,
oscillation frequency �̃ decreases, and even takes a negative
value beyond ��0.30.

On the other hand, when we encode multiple patterns �1
� P�, networks cannot retrieve patterns since the trajectory
with P=2 in Fig. 8 has no intersection with the retrieval
phase denoted by “P�1.” Although this trajectory with P
=2 has a small intersection with the phase denoted by “P
=1,” the phase denoted by “P=1” is useless for the case of
P=2. Since variable b in Eq. �52� is proportional to P, the
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FIG. 6. The comparisons of the numerical simulations and the
analytical results. Changing the value of b, we carry out several
numerical simulations for �a� P=1, �b� P=2, and �c� P=3. Ten
numerical simulations are conducted for each value of b, and abso-
lute values of stationary overlaps are plotted. The curved line and
the vertical line represent the analytical results shown in Fig. 3. The
numerical simulations are carried out with the parameters N
=10 000, �=−	 /4, and a=1.
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FIG. 7. �a� �− �b / a� phase diagram for analog neural networks

with the Heaviside function. Retrieval state with negative Re��1�
and Re��2� is found in the region enclose by the thick line. In the
region with “P=1,” Re��� takes a positive value, and retrieval state
is stable only when we encode a single pattern �P=1�. Meanwhile,
in the region with “P�1,” Re��� takes a negative value, and re-
trieval state is stable for arbitrary finite value of P. �b� From Eq.
�31�, we calculate retrieval frequency �̃ as a function of �. Note
that this retrieval frequency �̃ is only valid for stable retrieval state
in �− �b / a� phase diagram.
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trajectory with 2� P also has no intersection with the phase
denoted by “P�1.” Therefore, when we encode multiple
patterns, these networks cannot retrieve pattern no matter
how we set pattern frequency �.

B. The optimal shape of the STDP time window to encode a
large number of spatiotemporal patterns

The above-mentioned neural networks cannot memorize
multiple spatiotemporal patterns. This small storage capacity
of the networks is due to crosstalk effect induced by the large

value of W̄=1−r=0.125. As shown in Eq. �10�, variable b is

proportional to W̄ and P. Therefore, if W̄ is large, increase of
P gives rise to rapid increases of variable b. This means that
trajectory �b / a ,�� in Fig. 8 quickly escapes from the re-
trieval phase denoted by “P�1” with increase of P.

On the other hand, if we set r=1, average W̄ takes the
zero value, and hence variable b takes the zero value for
arbitrary finite P. In this case, we can encode a large number
of patterns since point �b / a ,�� does not move even if we
change pattern number P. In Fig. 9�a�, we plot storage ca-
pacity �the maximum of the number of patterns for success-
ful retrieval� as a function of r. As suggested by our analysis,

Pc in Fig. 9�a� diverges at r=1. The time window with W̄
=0 is thus optimal to encode a large number of spatiotempo-
ral patterns.

When we set r=1, point �b / a ,�� lies on the X axis of the
�− �b / a� phase diagram. This point moves along the X axis
as pattern frequency � increases. The change of retrieval
frequency �̃ during this point movement is plotted in Fig.
9�b� as a function of �. The retrieval frequency �̃ diverges at
both the ends since point �b / a ,�� approaches �0,−	 /2� or
�0,	 /2� at these ends. Similarly to Fig. 8�b�, retrieval fre-
quency �̃ in Fig. 9�b� decreases as � increases. However,
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FIG. 8. �a� The trajectory of �� ,b / a� calculated from Eqs. �51�
and �52� with change of � is plotted on �− �b / a� phase diagram
for P=1 and P=2. As � increases, point �� ,b / a� proceeds in the
direction indicated by the arrow. �b� The retrieval frequency of
overlap �̃ is plotted as a function of � for P=1. With P=2, retrieval
is impossible since the trajectory with P=2 has no intersection with
the retrieval region with “P�1.” The parameters for the time win-
dow are set to be the same as Fig. 1 except for r=1.125.

(a)

0

5

10

15

20

0.9 1 1.1 1.2 1.3

P

r

(b)

-10

-5

0

5

10

0 0.2 0.4 0.6

ω

ω

~
(c)

0.9

1

1.1

1.2

1.3

0 0.2 0.4 0.6

r

ω

P=1

P=3

P=2

P=1
P=2

P=3

FIG. 9. �a� The storage capacity �the maximum of the number of
patterns for successful retrieval� in networks with the learning rule
�7�–�10� is plotted as a function of r with parameter �=0.022	.
Storage capacity Pc diverges at r=1. The parameters for the time
window are set to be the same as Fig. 1 except for r. �b� Setting
r=1, we plot retrieval frequency of overlap �̃ as a function of �.
With r=1, retrieval frequency is independent of P. �c� The upper
and lower bounds of r for successful retrieval are plotted as a func-
tion of � for P=1,2 ,3. Retrieval state is stable in the region be-
tween the upper and the lower bounds for each value of P.
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retrieval in Fig. 9�b� is successful in the wider range of �
than that in Fig. 8�b�. To investigate how parameter r affects
this range of �, in Fig. 9�c�, we plot the upper and lower
bounds of r for successful retrieval as a function of � for the
various values of P. In this figure, retrieval is successful in
the region between the upper and the lower bounds. As the
figure indicates, the range of � is maximized with r=1. At
r=1, the range of � is independent of P, while at the differ-
ent r, the range dramatically decreases as P increases. There-
fore, at least in the present model, the time window with

W̄=0 is effective also in maximizing the range of pattern
frequency � for successful pattern retrieval.

V. DISCUSSION

We have studied STDP-based spatiotemporal learning in
analog neural networks. To encode periodic spatiotemporal
patterns �i

�, we have defined variables a and b by Eqs. �7�
and �10�, and have introduced learning rule �9�. The numeri-
cal simulation in Fig. 2 has elucidated that learning rule �9�
permits building analog neural networks acting as associative
memory for spatiotemporal patterns. The pattern retrieval in
this numerical simulation occurs at a different time scale
from encoded patterns. To analyze this change of time scale
in pattern retrieval, we have derived dynamics of order pa-
rameters assuming that pattern number P is finite. An evalu-
ation of the retrieval solution in the order parameter dynam-
ics has clarified that retrieval frequency �̃ is a function of the
phase of the Fourier transform of time window W��t�. We
have also analyzed the stability of the retrieval solution and
have shown that the stability of the retrieval state with a
single encoded pattern �P=1� is determined by two eigenval-
ues �1 and �2. However, with multiple encoded patterns �1
� P�, we have found appearance of an additional eigenvalue
� in the stability analysis. This eigenvalue � suggests the
possible phase transition in which stable retrieval state with a
single encoded pattern �P=1� becomes unstable with mul-
tiple patterns �1� P�. Actually, in Fig. 6, we have found the
occurrence of this phase transition due to the eigenvalue �.
In Figs. 8 and 9, we have discussed the influence of the
shape of the STDP time window on the retrieval properties.
The results in Fig. 9�a� have shown that when the time av-

erage of the time window W̄ takes the zero value, one can
encode the maximal number of spatiotemporal patterns. The
analytical results in Fig. 9�c� demonstrates that the time win-

dow with W̄=0 is effective in maximizing the range of pat-
tern frequency � for successful retrieval.

Equation �31� shows that variable �, namely, the phase of
variable a, determines retrieval frequency �̃. If time window
W��t� is an odd function �i.e., W��t�=−W�−�t��, variable a
is a pure imaginary number, and phase � takes −	 /2 or 	 /2.
In this case, retrieval is impossible since Eq. �30� shows that
m1 takes the zero value when �= ±	 /2. This means that,
for successful pattern retrieval, we have to adjust the param-
eters so that the shape of time window W��t� deviates from
perfect antisymmetry. One possible way to break the anti-
symmetry is to set �−��+ in Eq. �50�. We can also control
phase � by changing �0 since variable a is proportional to
e−i��0 as shown in Eq. �51�.

On the other hand, if time window W��t� is an even func-
tion �i.e., W��t�=W�−�t��, variable a is a real number, and
phase � takes 0 or 	. When variable a is a real number,
synaptic connections become symmetric �i.e., Jij =Jji�. It is
well known that when connections are symmetric and the
transfer function is a monotonically increasing function, ana-
log neural networks have the Lyapunov function L��xi��
=− 1

2�ijJijviv j +�i�0
viF−1�vi�dvi with vi=F�� jJijxj�. This

Lyapunov function ensures eventual settlement to a fixed
point, and this fact is consistent with �̃=0 at �=0 in Eq.
�31�. Kühn et al. have pointed out that the existence of a
Lyapunov function allows one to use the analytical method
based on the equilibrium statistical mechanics since the
global minimum of a Lyapunov function can be evaluated
by the zero temperature limit of distribution P��xi��

exp�−�L��xi��� �17�. Note, however, that when complex
number a induces dynamical pattern retrieval, this technique
based on the Lyapunov function is unavailable since asym-
metric synapse connections make the Lyapunov function
useless.

It is an interesting problem to apply the present STDP-
based learning rule to spin neural networks. Coolen et al.
have derived the order parameter dynamics of spin neural
networks assuming the asymmetric Hebb learning rule in the
Glauber dynamics �7�. If we apply their scheme to neural
networks with the STDP-based learning rule, we obtain the
order parameter dynamics similar to Eqs. �14� and �16�. It is
almost evident that the present STDP-based learning rule
induces oscillation of an overlap also in spin neural net-
works.

The P-dependent stability of the present analog neural
networks is remarkable in contrast with spin neural networks
with the typical Hebb learning rule. In the present associative
memory, retrieval state is given as a function of a and b in
learning rule �9�. Although this retrieval state is independent
of P, the linear stability can depend on P owing to eigen-
value �. Whereas, the properties of retrieval state of spin
neural networks with the Hebb rule are always the same as
ferromagnetic state for arbitrary finite P. The major cause of
P-dependent stability in the present associative memory
model seems to be the X term, which appears in local fields
owing to parameter b. The Heaviside function assumed in
Sec. IV yields positive X. However, if we assume F�h�
=tanh��h�, X can take the zero value. The change of the
form of transfer function F�h� thus can influence the
P-dependent stability. It is also interesting to investigate the
effect of b-term to spin neural networks since spin neurons,
which take −1 or +1, possibly yield the zero-valued X. When
variable a is a real number, the b term may give an interest-
ing influence on the stability of the replica symmetric solu-
tions.

The numerical simulations in Figs. 5�b� and 5�c� suggest
the presence of mixture state, in which a number of patterns
are retrieved simultaneously. The order parameter dynamics
�19�–�21� is applicable also to the mixture state. Thus, one
can evaluate the stability of the mixture state following the
scheme similar to Secs. III C and III D. It is interesting
to investigate the influence of noise on the stability of the
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mixture state since, in the Hopfield model, adding noise or
changing temperature can avoid the network from sticking in
the spurious state. We may expect that even when the present
neural networks have no energy function, adding noise help
destabilizing the mixture state so that the retrieval state has a
wider basin of attraction. However, some aspects of the mix-
ture state of the present neural network are different from
those of Hopfield model. In the present model, the mixture
state of two patterns can be stable as shown in Figs. 5�b� and
5�c�, while in the Hopfield model, mixture state of an even
number of patterns is unstable. The further analysis is neces-
sary to discuss the stability of mixture state.

Figure 9�a� shows that r=1, and hence W̄=0, is the opti-
mal condition to encode multiple spatiotemporal patterns in
analog neural networks. Also in our previous studies on spik-

ing neural networks, condition W̄=0 has been shown to
maximize the storage capacity of the networks �9,10�. The

analytical solutions in these studies indicate that W̄=0 leads
to the vanishing of cross-talk effect and divergence of Pc. An
interesting fact is that the experimentally found STDP time
window, which has both a negative part and a positive part as

in Fig. 1, is quite efficient in reducing the size of W̄, and
hence encoding a large number of spatiotemporal patterns.
From the studies of spin neural networks with symmetric

connections �3�, we expect that with W̄=0, the storage ca-
pacity of the present neural networks is proportional to N
�i.e., Pc=�cN�. Actually, under the same condition as Fig. 2,
numerical simulations with N=2000, 4000, and 8000 suggest
the existence of the storage capacity of order N �Pc

�0.02N�. Analytical derivation of this storage capacity of
order N, however, requires the further theoretical studies on
dynamical pattern retrieval in asymmetric neural networks.

In the present analysis, we only treat the case of the peri-
odic spatiotemporal patterns defined by Eq. �3�. However,
the STDP-based learning rule �4� is applicable to a consid-
erably wide class of spatiotemporal patterns. Figure 10 de-
scribes a result of a numerical simulation in which the
STDP-based learning is utilized to encode spatiotemporal
Poisson bursting patterns. We generate three random spatio-
temporal patterns according to homogeneous Poisson pro-
cess as shown in Fig. 10�a�, and encode the patterns by learn-
ing rule �4�. Then, in Fig. 10�b�, we carry out a numerical
simulation setting the initial condition close to the onset ac-
tivities of the first pattern. Note that the bumps of the analog
neuron activities in Fig. 10�b� show an excellent accordance
with bursting activities in Fig. 10�a�, while the shapes of the
bumps in Fig. 10�b� are different from the bursting activities
in Fig. 10�a� as in the case of Fig. 2. It is remarkable that in
Fig. 10�b� some neurons exhibit multiple bump activities
while some other neurons stay in the silent state. It is also
worthy to note that after the retrieval finishes, every neuron
returns to the silent state. The similar phenomenon is found
to occur in spiking neural networks as shown in Fig. 11.
These results of the numerical simulations demonstrate the
highly flexible applicability of the STDP time window to
encoding timings of activities in a variety of neural net-
works. We will report the further details on the retrieval of
the Poisson patterns somewhere else.

Both in the present study on analog neural networks and
in previous studies on spiking neural networks �9,10,29,30�,
the STDP induces retrieval of spatiotemporal patterns at a
different time scale than encoded patterns. The present study
shows that analog neural networks with positive � exhibit
the negative retrieval time scale, at which retrieval occurs
in reverse order. Interestingly, such reversed replay of spa-
tiotemporal activities has been observed in the electrophysi-
ological experiments in the Hippocampus of awaking rats
�31�. The normal order replay of spatiotemporal patterns has
also been found to occur at a faster time scale in sleeping rats
�32�. Our studies of spatiotemporal associative memories
contribute to a systematic understanding of the variety of
time scales in spatiotemporal replays in the real nervous sys-
tem.
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FIG. 10. A numerical simulation of the STDP-based learning of
spatiotemporal Poisson bursting activities. �a� We first generate
three random spatiotemporal patterns ��=1, . . . ,3�. �a� shows ac-
tivities of the first ten neurons �i=1, . . . ,10� in the first random
spatiotemporal pattern ��=1�. Bursting activities in the interval 0
� t�3000 are generated randomly according to homogeneous Pois-
son process with a constant rate �=1/3000. �b� Second, we encode
the three random patterns ��=1, . . . ,3� by the STDP-based learning
rule �4�, and carry out a numerical simulation setting the initial
condition close to the onset activities of the first pattern ��=1�. �b�
shows the first ten neuron activities in the numerical simulation.
These behaviors of analog neurons show the excellent accordance
with the encoded pattern shown in �a�. We model bursting activities
in �a� by Gaussian distributions with standard deviation �=25. The
STDP-based learning is carried out with the same time window as
Fig. 1. The numerical simulation in �b� is done with the Heaviside
function with the threshold value 0.1 �i.e., F�h�=H�h−0.1��. 10 000
neurons are assumed in both figures.
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APPENDIX: ANALYTICAL SOLUTIONS FOR ANALOG
NEURAL NETWORKS WITH THE

HEAVISIDE FUNCTION

The analysis in Sec. III covers analog neural networks
with arbitrary transfer function F�h�. The purpose of the
present section is to use the Heaviside function H�h� in Eq.
�48� to derive the specific analytical solutions for the Heavi-
side function.

Before conducting stability analysis, we have to calculate
retrieval state with the Heaviside function. Substitution of
Eq. �48� into Eq. �25� yields

m1 =
1

2	
�

0

2	

cos �1H�am1cos��1 + �� + bX�d�1

=
1

2	
�

0

2	

cos��1 − ��H�m1cos �1 + �b/a�X�d�1,

=
1

2	��0

�0

cos��1 − ��d�1 + �
2	−�0

2	

cos��1 − ��d�1�
=

1

	
cos � sin �0, �A1�

where we define �0 as

�0 = cos−1�−
�b/a�X

m1 � . �A2�

In the same manner, Eq. �27� is rewritten in the form

X =
�0

	
. �A3�

With b=0, we can easily solve Eqs. �A1�–�A3�, to obtain
�0=	 /2, X=1/2, and m1= �1/	�cos �. When variable b
takes a nonzero value, we reduce Eqs. �A1�–�A3�, further
and obtain the following two equations:

m1 =
1

	
cos � sin�	X� �A4�

and

cos�	X� = −
�b/a�X

m1
. �A5�

Therefore, X satisfies the equation

X = −
cos �

2�b/a�	
sin�2	X� . �A6�

The numerical solution of the above equation determines X.
Then, we can obtain m1 from Eq. �A4�.

To evaluate stability condition with P=1, we calculate
eigenvalues of matrix A in Eq. �36�. Substituting H��h�
=��h� into Eq. �33�, we obtain

I��1,a�1� =
1

2	
�

0

2	

cos �1��am1cos��1 + �� + bX�

acos��1 + �1�d�1

=
1

2	
�

0

2	

cos��1 − ����am1cos �1 + bX�

acos �1d�1

= c�2acos2 �0 cos �� , �A7�

where

c = 1/�2	am1sin �0� . �A8�

In the same manner, we obtain

I��1,b� = c�2b cos �0 cos �� , �A9�

I�1,a�1� = c�2acos �0� , �A10�

and

I�1,b� = c�2b� . �A11�

Therefore, matrix A takes the form
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FIG. 11. The same as Fig. 10, but spiking neural networks are
assumed instead of analog neural networks. Spiking neurons are
modeled by the Hodgkin-Huxley equations, and interconnected by
chemical synapses. �a� The activities of the first ten neurons in the
first random pattern ��=1�. In the interval 0� t�3000, delta-
function-like activities �spike timings� are generated randomly ac-
cording to the homogeneous Poisson process. �b� The behaviors of
the first ten spiking neurons in the numerical simulation, where the
initial part of the first spike pattern ��=1� is evoked by the pulsed
external inputs at t=0. These behaviors of the spiking neurons also
show the excellent accordance with the encoded spike pattern
shown in �a�.
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A = � − 1 + c�2b� c�2acos �0�
c�2b cos �0 cos �� − 1 + c�2acos2 �0 cos ��

� .

�A12�

Eigenvalues of matrix A are given as

�1 = − 1 �A13�

and

�2 = − 1 +
1

	m1sin�	X�
�cos2�	X�cos � + �b/a�� ,

�A14�

where we replace �0 by 	X using Eq. �A3�. From these
eigenvalues, we can evaluate the stability condition �37�.

Finally, we compute eigenvalue � to analyze the stability
for the case of multiple patterns �1� P�. Following the same
manner as Eqs. �A7�–�A11�, we obtain

I��2,a�2� = c�acos �� . �A15�

Therefore, eigenvalue � in Eq. �46� is computed as

� = − 1 +
1

2 sin2�	X�
, �A16�

where we use Eqs. �A1� and �A3�. From eigenvalue � as well
as eigenvalues �1 and �2, we can evaluate the stability con-
dition �47�
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